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Abstract—When using a firewall system like IPFW to detect
threats, the system can end up doing a lot of packet processing.
This can negatively impact performance-sensitive systems such as
storage nodes in data centers. This paper describes a practical
solution to this problem using a load-weighted probabilistic
mechanism that allows a trade-off between perfect visibility of
network packets and reduced impact to system load.
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I. INTRODUCTION

Firewalls shield networks and hosts from malicious traffic
by blocking network packets that do not match any of the
rules defined in a security policy. In high performance and
network throughput environments, extensive packet processing
by firewalls can limit the system’s ability to utilize the full
capacity of network links. This problem is typically addressed
by restricting the number and complexity of firewall rules,
disabling the firewall entirely, or sacrificing the additional
throughput so all the packet processing can be completed.

Our work uses a form of packet sampling to provide a
trade-off between complete application of a security policy and
increased performance. Other papers on packet sampling[1–
3] have been focused on detecting and classifying threats,
not performance enhancement. However, their approaches to
packet sampling and the implications addressed provided the
inspiration for the work done here. The BSD community[4, 5]
has produced several in depth investigations into network and
firewall performance.

II. IPFW & IPFWD
We wrote a daemon named IPFWD for FreeBSD that updates

an early rule in IPFW (the IP Firewall) that has a chance
to accept any packet. The probability of early acceptance is
updated over time and dependent on the current system load.
In high performance systems this can result in an increase in
network throughput without additional CPU load.

This approach is based on the premise that firewall perfor-
mance can be improved by reducing the number of rules applied
to each packet. Supposing a white-list policy, a firewall must
apply every rule to a packet before it’s denied. With IPFWD,
the system has a chance to accept any packet early and skip
any further computation. Test results show this reduces the
resources required to handle the same amount of traffic in
some systems.

This is a shift in mindset from typical firewalls[6]. Instead
of enforcing every part of the security policy all the time,
IPFWD enforces the policy some of the time and provides
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additional information so the missed violations can be inferred.
For this cost, you gain increased firewall performance and
network throughput in resource bound systems. IPFWD works
under the assumption that it’s acceptable to allow a percentage
of policy violations given that network traffic patterns are
often repeated and the goal is detection, not immediate
prevention. Administrative action may be taken later when
resource requirements are lower.

As an example, under heavy load IPFWD may immediately
accept 40% of packets. Some of those packets may have
been malicious. Supposing a port scan was initiated during
this time and rules exist to block it, at least 60% of the
port scan would still be rejected and logged. Since the early
acceptance probability will fluctuate over time, IPFWD provides
information in the IPFW logs to show the chance undetected
violations occurred for each detected violation. IPFWD allows
administrators to keep extensive rule sets that fully implement
their security policy. Instead of having to simplify rule sets
to increase performance, IPFWD balances policy enforcement
and performance automatically. Under normal or light load,
IPFWD will enforce the entire security policy 100% of the
time.

A. Choice of IPFW
IPFW is a stateful firewall written for FreeBSD[7] which

supports both IPv4 and IPv6. It is comprised of several
components: a kernel firewall filter rule processor and its
integrated packet accounting facility, a logging facility, NAT,
the dummynet traffic shaper, a forward facility, a bridge facility,
and an ipstealth facility.

We chose IPFW for its close integration with the FreeBSD
operating system, kernel packet filter, and performance. Perfor-
mance is dependent on system parameters and circumstances.
IPFW outperforms PF[4], the other main firewall option for
FreeBSD, in stateful packet filtering. Research[6] has shown
that stateful rules are more powerful and flexible than stateless
rules, where no session information is maintained. Additionally,
the capabilities of IPFW extend beyond packet filtering into
source based routing, traffic shaping and more. It’s for these
reasons that we chose IFPW over PF.

Firewall rules are treated by IPFW in a first-match-wins fash-
ion. IPFW also contains built-in functionality and rule syntax
for probabilistic packet matching. From the documentation, this
feature is intended for load balancing and other traffic shaping
tasks. It’s the core of IPFWD’s operation.

III. IPFWD
IPFWD increases firewall performance by reducing the

average amount of work it takes to process a packet. Depending
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on the current system load, IPFWD increases or decreases the
chance the IPFW will accept a given packet early. It does this
by adding and maintaining an early rule in the IPFW rule set
of the following form:

prob 0.000 allow ip from any to any

which allows any IP packet, incoming or outgoing with a chance
equal to the probability given.

IPFWDs behavior is based on the assumption[8] that the
majority of network traffic is valid, malicious events are rare,
and it’s sufficient to be notified of security policy violations
instead of always stopping them. These assumptions will
not hold in all environments, but we can leverage them for
performance gains when they do.

Since IPFW uses a first-match-wins rule system, this early
rule will be encountered before the majority of the other rules
in the rule set. The probability given in this rule determines the
chance that IPFWD skips processing all further rules, supposing
that there has not been a match already.

This is especially valuable for a white-list firewall rule set
dealing with large amounts of rejected traffic; normally each
rejected packet has all rules applied to it in order to find a
match. When no matches are encountered, the default rule is
employed and the packet is rejected.

In a typical data center internal network, the vast majority
of traffic is valid and going to be accepted by the firewalls
rule set. However, these rule sets are often complex and take
increasing time to match packets depending on the number of
rules. For a rule set of length n, we can expect a packet to
encounter on average n

2 failed matches before matching the
correct rule and being accepted.

IPFWD improves the average number of failed matches
before a successful match from

n

2

to (
k · P(EA)

)
+
(n
2
· P(¬EA)

)
where k, a small constant compared to n, is number of rules

before the early acceptance rule and P(EA) is the probability
that the early acceptance rule is matched.

Simplifying in order notation, IPFWD reduces the number
of failed matches before a successful match by a factor of

n
2

n
2 · P(¬EA)

=
1

P(¬EA)
.

While this method increases the speed the system processes
packets, it creates a chance that packets that would have
normally been rejected will get through the firewall.

In order to provide visibility into this process, IPFWD
writes its own logs to include information about the early
acceptance probability. From this information, administrators
can extrapolate the probability that additional invalid packets
made it through the firewall for each that is detected. This is
discussed further in Section IV.

A. Application
IPFWD is not intended to be used on all types of systems.

It’s application instead most directly benefits the following
types of systems:

1) High Network Performance
The gains provided by IPFWD are only apparent in
systems where network throughput is matched by or out
performs CPU speed. Systems that can already easily
handle fully processing each packet will not benefit
by reducing processing time. Given modern CPU clock
speeds, systems with network cards slower than 1 Gb/sec
will likely not benefit from IPFWD.

2) Complex Firewall Requirements
IPFWD works by reducing the average number of rules
that fail to match before a packet is finished being
processed. Very simple rule sets will gain little from
reducing the number of rules applied to each packet.

3) Detection Based Security Policy
By using IPFWD, administrators sacrifice the assurance
that every invalid packet will be rejected. However, they
are still provided information as to whether some invalid
packets were rejected, and that information can be
used to infer the existence of additional invalid packets.
Environments that cannot allow this relaxation in security
policy enforcement will no benefit from IPFWD.

IV. SECURITY IMPLICATIONS

Security policies define what is and is not allowed in an
organization. At the network and host level, this is implemented
in part by a firewall rule set. A policy violation on an internal
network is more serious than an external network. Internet
facing hosts can expect to be scanned, experience network
anomalies, and be attacked by third party agents more often
than internal hosts.

However, when these events do occur on an internal network,
there is a strong possibility something else is wrong. Unex-
pected network activity on a fully controlled internal network
indicates compromise or misconfiguration, both of which are
serious problems. The usage of IPFWD is predicated on the
assumption that it’s sufficient to be notified of these events so
further action can be taken later.

Allowing some percentage of network packets through the
firewall without inspection does mean that attacks that would
have normally been blocked could succeed. The following
factors help to account for this risk:

1) Repetition
Research[9] shows malicious network activity such as
malware beaconing and network reconnaissance, as well
as general network errors are likely to be repeated over
time. The longer the activity persists, the more likely
it is to be detected by IPFW, even when IPFWD is
allowing a high percentage of the network traffic through
unchecked.

2) Disruption
Though some malicious network activity may only
consist of a single packet, others will require multiple
packets. Since IPFW works on a per-packet basis,
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malicious network activity will experience approximately
(1−m)% packet loss where m is IPFWDs probability
of early acceptance. The exact effect this would have on
malware or reconnaissance would depend, but generally
will increase the chance of failure or invalid results.

A. Example Scenario

Suppose each host in a data centers internal network is
running IPFW and IPFWD on each host, average CPU usage
is 75%, and have rule sets blocking common network attacks.
One of the hosts has been compromised and begins conducting
network reconnaissance by port scanning the other hosts on
the network.

Firewall rules are in place to block host-to-host communica-
tion to m% of the ports being scanned. This means that 1−m%
of the scan would be allowed regardless of IPFWDs action.
This percentage represents valid host-to-host communication
as determined by the security policy.

IPFWD would allow 75% of the policy violating port scan
through to the host, and 75% of the replies back to the
compromised host. This results in 75%∗75% = 56.25% of the
port scan that should have been stopped succeeding. However,
the other 1 − 56.25 = 43.75% of the port scan was blocked
and logged, alerting system administrators to the presence of
malicious network activity so further action can be taken.

Thus, the chance of missing a security policy violation
depends on the type of traffic. The following situations exist
when both incoming and outgoing firewall rules are employed:

1) Incoming or Outgoing + No Reply
Here, the firewall only has one chance to catch the
policy violation. So, if the early acceptance probability
is m, then m% of the policy violating packets will be
allowed.

2) Incoming or Outgoing + Reply
Here, the firewall has two chances to catch the policy
violation. So, if the early acceptance probability is m,
then m′% of the policy violating packets will be allowed
where m′ = m ∗m.

V. BENCHMARKING PERFORMANCE

We benchmarked the performance of IPFW in relation to
CPU usage and network throughput. The goal was to determine
if IPFWD reduces the average time IPFW takes to process
packets. Tests were run on three platforms and four different
network cards, referred to as four different systems. The
most important parameters to these tests are CPU, NIC, and
ENV. Descriptions of each system are given in the tables below:

Isilon OneFS 40Gb System
OS FreeBSD 11 Release
CPU 8 x64 Intel R© Xeon R© CPU @ 2.20GHz
MEM 64Gb
NIC Ethernet 40Gbase-T
ENV Physical

Isilon OneFS 10Gb System
OS FreeBSD 11 Release
CPU 8 x64 Intel R© Xeon R© CPU @ 2.20GHz
MEM 64Gb RAM
NIC Ethernet 10Gbase-T
ENV Physical

WWU 1Gb System
OS FreeBSD 11 Release
CPU 8 x64 Intel R© CoreTM i7-2600 CPU @ 3.4GHz
MEM 16Gb
NIC Ethernet 1000baseT
ENV Physical

Virtualised 10G System
OS FreeBSD 11 Release
CPU 1 x64 Intel R© Xeon R© CPU @ 1.80GHz
MEM 512Mb
NIC Ethernet 10Gbase-T
ENV Hypervisor

The systems were tested on x64 FreeBSD 11 Release, with
varying CPU type, CPU speed, RAM and network cards. Isilon
and WWU systems were both physical hardware, while the
Virtualised system was in a hypervisor environment hosted by
a third party service.

Virtualisation made it more difficult to have the same
confidence in the results as with the physical machines. Tests
on the Virtualised system were repeated additional times to
account for the variability of the underlying physical hardware
and contention between virtual machines.

The WWU and Virtualised tests were conducted on stock
FreeBSD 11 without additional network performance con-
figuration applied. The Isilon systems contained additional
network performance tuning and demonstrates the additional
gains IPFWD can provide with careful FreeBSD 11 kernel
configuration.

A. Netperf
Multiple network performance tools were explored but the

final results were compiled using Netperf[10]. Netperf generates
network traffic between client and server instances and measures
throughput, errors, and other network performance metrics.
Netperf was chosen because it was readily available on all test
platforms, provides built-in CPU utilization measurement, has
a wide range of test types and is used elsewhere in the BSD
community for testing.

We chose the test type UDP STREAM over TCP STREAM
for simplicity and to preserve CPU cycles for IPFW. Raw
network throughput and CPU performance were the target
metrics, which can be difficult to assess with TCP[10]. Netperf
is single threaded, which allowed easier comparison of results
between systems with different numbers of cores. Additionally,
all tests were run while the system was idle to minimize
contention over system resources.

All tests were conducted using the following setup:
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Machine 1 Machine 2
ipfw ipfw
netserver ipfwd

netperf
CPU monitor

Table I: Testing Setup

In which Machine 2 was generating network traffic as well
as running IPFW and IPFWD. This traffic was received by
netserver on Machine 1, where throughput metrics were
calculated and then sent back to Machine 2 for reporting.

B. CPU Measurement

CPU utilization measurement was the most difficult parame-
ter to measure in these tests. There are many factors that can
account for variability between tests and jitter in the results.
The Netperf manual describes these challenges and the variety
of techniques used on different systems to measure CPU usage.

Netperf was run in single threaded mode, which explains
why throughput was not closer to the maximum throughput
for the NIC on each system. The FreeBSD network stack
allows multithreaded packet processing by utilizing multiple
queues meaning the kernel can spread the work done by IPFW
over multiple cores[7]. Since we were indirectly testing the
performance of IPFW through Netperf, there were two different
CPU measurements to account for: kernel time and user time.
Since IPFW runs in the kernel, its CPU time is classified as
kernel time.

Netperf was able to measure CPU utilization on the Vir-
tualised and WWU systems, but didn’t work on the Isilon
systems. Instead, ps was used. ps is a BSD utility that displays
information about processes, including CPU utilization. We
used ps to poll Netperf’s CPU usage and averaged the output
to get the results presented here. These tests are comparable
since both measured user CPU utilization, not kernel CPU
utilization. Thus, IPFWs CPU usage was measured indirectly
through the CPU usage of netperf.

VI. RESULTS

A. Throughput & CPU

Figures 1, 2, 3, and 4 show the interaction between CPU
utilization and network throughput for each system with respect
to IPFWDs early acceptance probability. The dashed lines are
CPU utilization; solid is network throughput in Mb/second.
A higher acceptance probability means a greater chance that
a given packet was immediately accepted without further
processing.

The upward trend in throughput on the x-axis shows that as
the early acceptance probability increases, so does throughput.
The CPU usage shows that this additional throughput was
gained without additional CPU utilization, meaning the system
was spending fewer cycles to process each packet on average.

The lack of any trend in Figure 3 was expected and will be
addressed in Section VII.

Figure 1: Throughput & CPU for Isilon 40G system

Figure 2: Throughput & CPU for Isilon 10G system

B. Throughput / CPU

Figures 5, 6, 7, and 8 show network the ratio of through-
put to CPU utilization for each system where ratio(x) =
throughput(x)/cpu(x). The data being presented here is the
same as the previous graphs, merely shown differently. The
upward trend over the x-axis shows that as the probability of
early acceptance increases, the system is spending less CPU
time to process packets on average.

The dashed line shows the line of best fit for the throughput
to CPU utilization ratio and shows the upward trend more
clearly than the raw data.

VII. DISCUSSION

All the systems tested can be broadly categorized into two
groups: CPU bound and NIC throughput bound. We can see
that IPFWD affects performance positively but differently for
both types.
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Figure 3: Throughput & CPU for WWU 1G system

Figure 4: Throughput & CPU for Virtualised 10G system

In CPU bound systems, IPFWD reduces the number of cycles
it takes to process each packet, allowing more packets to be
processed in the same time and increasing throughput. This
is shown most clearly in the Virtualised system tests, which
have the weakest CPU but 10Gb Ethernet NICs. Regardless
of test type, in this scenario Machine 2 (Table I) is always at
100% CPU utilization. However, as the probability to accept
increases in IPFWD the throughput also increases.

In NIC throughput bound systems, reducing the number of
CPU cycles to process packets will not increase throughput.
However, IPFWD still reduces CPU load which allows more
cycles to be dedicated to other system processes. This is more
difficult to see in the test results, particularly since the CPU
measurement tools are inherently imprecise and difficult to
compare between systems.

The WWU 1G tests (Figures 3, 7) provide an example of a
NIC bound system. The lack of any performance gains in the
WWU 1G tests provides an example of when IPFWD should

Figure 5: Throughput/CPU for Isilon 40G system

Figure 6: Throughput/CPU for Isilon 10G system

not be used. In this system, the CPU and other system resources
are more than sufficient to apply the entire IPFW rule set to
each packet at wire-speed. Reducing the amount of CPU time
it takes to process each packet does not provide any benefit.

Figures 5, 6, 7, and 8 present these findings in a condensed
form. The positive slope found in Figures 5, 6, and 8 show
again that in CPU bound systems, IPFWD reduces the work it
takes to process packets on average.

In summary, systems where the throughput of the NIC
exceeds what the CPU can supply CPU utilization is high
and throughput is lower than the NIC maximum (Figure 4).
Conversely, when CPU availability exceeds NIC throughput,
throughput is high and CPU utilization is low (Figure 3).

Additionally, all tests were run with minimal IPFW rule sets
in a range of 30 to 60 rules depending on the environment and
network card configuration. Larger production rule sets would
benefit even further from IPFWD.
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Figure 7: Throughput/CPU for WWU 1G system

Figure 8: Throughput/CPU for Virtualised 10G system

VIII. FUTURE WORK

Ideally, a white-list firewalls rule set would be constructed
so that the most commonly applied matches are reached sooner
rather than later. IPFWD accomplishes this task by artificial
early stopping. Firewall rule reordering could be another
solution to this problem. Given logs of common network traffic
for the system, statistical analysis could show which rules are
matched more often than others. With this information, the
rule set could be reordered so that the most commonly applied
rules are earliest. A combination of redundancy checking and
priority reordering could provide further performance gains as
well.

Further analysis could be done to packet samples in order
to more accurately determine appropriate bounds on the early
acceptance probability. Different systems and environments may
require more or less stringent packet checking. Environments
with very high confidence in network security might raise the
lower bound of the acceptance rate to improve performance.

Likewise, less confident environments may lower the upper
bound to ensure an acceptable percentage of packets are always
checked.

The tests conducted here were restricted to one core;
future work could explore the interaction of early acceptance
on parallel firewall packet processing. Running additional,
concurrent netperf tests would show how the system behaves
when the links are fully saturated.

Future versions of IPFWD could benefit from additional
modifiers to the early acceptance probability. For instance, the
system could reduce the early acceptance probability whenever
packets are dropped by the firewall, under the assumption that
invalid traffic likely precedes more invalid traffic.

IX. CONCLUSION

In performance sensitive computing environments, complex
firewall rules combined with high network throughput can
result in heavy CPU load, limiting system performance. IPFWD
addresses this problem by providing a graceful trade off between
packet visibility, total security policy enforcement and system
performance.

IPFWD reduces the average amount of work to process
packets by adding an early rule to IPFW that has a chance to
accept any packet. The security implications of this behavior
have been addressed and the performance benefits provided
have been demonstrated in a variety of systems.

IPFWD can be directly applied to high network performance
and resource conscious systems with complex firewall require-
ments to reduce CPU load and increase network throughput.
This work also serves as a proof of concept for future
probabilistic packet matching firewall implementations.

APPENDIX A
ADDITIONAL INFORMATION

The source code for IPFWD, additional test results,
and development cycle information may be found at
https://github.com/Gandalf-/ipfwd.
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